Terra Universal manufactures a vast selection of stainless steel products for cleanrooms, hospitals, laboratories, and other controlled environments. Among these steel-constructed products, you'll find tables, workstations, glove boxes, pass-throughs, doors, and more.
Electricity is in the air all the time; we can clearly see it during a lightning storm. But what happens when it’s in your cleanroom, glovebox or hood? Electrostatic discharge will damage components and materials, so get a better understanding of this phenomena and learn what you can do about it.
Did You Know? Fan/Filter Units Do More Than Meet ISO Requirements—they also prevent infection.
Most cleanroom professionals understand that FFUs capture contaminants that degrade particle-sensitive samples. But they also remove bacteria and many viruses and mold spores that contribute to a host of infections.
Most common bacteria are contained by the 0.3-micron pore size of high-efficiency particular air (HEPA) filters. Ultra-Low Penetration Air (ULPA) filters, which are rated 99.999% efficient at retaining particles of 0.12 microns and larger in diameter, capture ultra-fine contaminants, including many large viruses and mold spores.
These filters also remove aerosol-born pathogens—germs that literally hitch a ride on
This chart is intended as a general guide for various materials and chemicals. It shows some of the materials used in Terra’s products and chemicals likely to be used with them. Testing is strongly recommended for extreme conditions of use, such as prolonged exposure or immersion, high temperatures and high concentrations. The acids, caustics and salts in this chart are assumed to be in solution. Materials may react differently to the pure substances (glacial acetic acid, for example). See Terra Universal's line of plastic Desiccators.
This chart is intended as a general guide for various materials and chemicals. It shows some of the materials used in Terra’s products and chemicals likely to be used with them. Testing is strongly recommended for extreme conditions of use, such as prolonged exposure or immersion, high temperatures and high concentrations. The acids, caustics and salts in this chart are assumed to be in solution. Materials may react differently to the pure substances (glacial acetic acid, for example). See Terra Universal's line of Rubber & Synthetic Gloves.
This chart is intended as a general guide for various materials and chemicals. It shows some of the materials used in Terra’s products and chemicals likely to be used with them. Testing is strongly recommended for extreme conditions of use, such as prolonged exposure or immersion, high temperatures and high concentrations. The acids, caustics and salts in this chart are assumed to be in solution. Materials may react differently to the pure substances (glacial acetic acid, for example). See Terra Universal's line of metal Pass-Throughs.
Controlled environments act as secluded clean spaces for performing select applications in a manner that protects the internal samples or materials and/or the workers involved. Air pressure is a key component of a cleanroom. The internal pressure and, by design, the differential pressure, are closely regulated and maintained. Basic chemistry tells us that high pressure air has greater mass than low pressure air, and given the opportunity, will flow into the less dense environment.
Ascending or descending pressure differentials are part of the foundation of most controlled environments. Maintaining a specific differential between adjacent areas reduces the inflow of airborne particulates and/or prevents hazardous materials from escaping. The type of application dictates whether a positive or negative pressure space is required. So, how do these two pressure types differ?
High-tech industries have long been plagued by an unseen foe. From semiconductors to medical devices, manufacturers are forced to accept high product rejection rates due to particle contamination or critical defects. Oftentimes, contamination issues and product damage in these industries can be traced back to uncontrolled static electricity. When static is allowed to build-up, it becomes a double threat to a cleanroom, increasing the chances of ESA-induced contamination and electrostatic discharge (ESD) damage.